
CHAPTER 2
FROM QUANTUM CIRCUITS TO QUANTUM BRAITENBERG VEHICLES
Arushi Raghuvanshi and Marek Perkowski
It is not popularly known in public at large and even in engineering community that quantum computers are no longer only a dream but that they are quickly becoming a reality. Quantum circuits are already used commercially for secure communication and for generation of random numbers. DWAVE corporation in Canada presented already a prototype of their 28-qubit quantum computer. Optimists believe that quantum computing will begin to have a global impact around year 2010.
Based on our high school program, we consider building robots with quantum brains as an excellent method to explain teenagers how a quantum computer works and teach them many related mathematical concepts. These concepts would be perhaps boring for them when taught in separation and without motivational practical application examples. A group of five teenagers from Oregon were able to build many small Lego robots controlled by simulated quantum computers. They learn fundamentals of quantum computing in this process, and also contribute to a new research area that has been defined only very recently – quantum robotics.
This chapter has an interest in three questions:
1) what are the basic concepts of quantum circuits?

2) how quantum computers and quantum information concepts can be used to build more intelligent humanoid robots?
2) how the science education can be improved by teaching concepts of quantum computing and robotics to middle and high school students.
This chapter is related to all these questions. There will be more on other applications of quantum ideas in next chapters, for instance we will present quantum applications in robot vision.

2.1. The AND/EXOR base of logic. Fundamental methods and graphic visualizations.
2.1.1. Quantum Karnaugh Maps.

As we remember from previous chapters that a Boolean (binary) function can be represented by a truth table or by a Karnaugh Map. The Karnaugh map is derived from a truth table in a relatively simple process. The Karnaugh map of the CNOT gate is illustrated in Figure 2.1.1.1. CNOT is the first reversible (and quantum) logic gate that we will learn in this book. It is also called Feynman Gate to honor the great physicist Feynman, father of quantum computing. We will be using truth table and Karnaugh Maps to illustrate also quantum functions.
[image: image136.wmf]1

0

1

1

1

0

1

1

1

1

-

=

ú

û

ù

ê

ë

é

-

=

ú

û

ù

ê

ë

é

ú

û

ù

ê

ë

é

-

\

 [image: image2.emf]
 (a) (b)
Figure 2.1.1.1: a) Complete Karnaugh map of the CNOT Gate from Figure 2.1.1.1b

[image: image3.emf]cd

ab

00 01 11 10

00

10

11

01

 wxyz

Figure 2.1.1.2: Skeleton of four-variable Karnaugh maps

As we remember, the arrangement of bits in the Kmap’s rows and columns are in Gray code, where each value is only one-bit change from the preceding value. In this case, the progression is 0, 1. For two bits, the Gray Code sequence is 00,01,11,10. This sequence is used for both rows and columns of four-variable Karnaugh maps (an example is in Figure 2.1.1.2). Use the truth table to put the correct output values in each cell of the map. We will notice that the two-variable Karnaugh map has variables x and y as the outputs (Figure 2.1.1.1a). Now we separate output variables x and y to individual maps Karnaugh map and synthesize from it. This is shown in Figure 2.1.1.3 for output y. Other map for output function x is not interesting as it represents the wire x. You should remember these procedures from chapter 9, but it is always good to review the basic stuff, as we do in our “Sunday School Robotics” classes.
By EXOR-based synthesis we will understand synthesis of circuits with AND, NOT and EXOR gates. This kind of synthesis is mainly used in reversible and quantum circuits (you will learn about reversible circuits in chapter 15.

For the EXOR-based synthesis, the “groups” in the map are “boxes” (called also the “loops”) that should include as many ones as possible in it. As in AND-OR synthesis methods that we introduced in chapter 9, the loops can overlap, but the logic values in the overlapped regions are different for AND/OR and AND/EXOR synthesis procedures. Every one of the KMap cells with a “1” should be covered by an odd number of groups for AND-EXOR synthesis. Similarly every zero of the Kmap (negative minterm) should be covered by an even number of groups. This is based on using the following rules of Boolean algebra:

[image: image4.wmf]A

A

A

A

=

Å

=

Å

0

,

0

 (we assume that zero is an even number).
(We will learn in next chapters that these are also the rules of other algebras, for instance the so-called “rings”). Based on these simple rules, the AND/EXOR synthesis methods differ from the AND/OR synthesis methods that we learned in Chapter 9. But these methods are still similar, they differ only in the strategy how these overlapping groups are selected. So if you master designing AND/OR (SOP) circuits you can quickly learn how to minimize the AND/EXOR circuits in the framework of the “EXOR-based logic synthesis”. In Figure 2.1.1.3 we overlapped two two-cell groups, a and b, but in larger Karnaugh maps, the groups must have a power of two of the numbers of cells, each group being a product of literals. The logic expression (logic code) of a product group is based on the nature of the cells that this group occupies. In the simplest case it represents a product of literals (inputs and negated inputs) but later on we learn how to use more complex patterns of groups, that are not only products of literals, but some other functions. The method works however irrelevant of the groups that we are EXORing. The odd number of overlapping groups means a 1 and the even number of overlapping groups or no group at all mean a 0.

[image: image5.emf]a

0

1

0

0 1

1

b

1

1 0

y

Figure 2.1.1.3. Groups in partial Karnaugh map of for output y of the CNOT gate. Overlap of the groups represents 0. Thus function is
[image: image6.wmf]b

a

b

a

b

a

Å

=

Å

, created by overlap of groups a and b.
During synthesis, we can write the expression for each of the groups and EXOR them all together. So far these expressions are always products of literals. When we have a EXOR-logic expression we can try to simplify it algebraically, using EXOR rules of Boolean Algebra. We listed these rules in Chapter 9, please review them and apply to our circuits below. As the groups for a and b in Figure 2.1.1.3 cover products of literals ab’ and a’b, and they both overlap over a 0 cell representing product ab, the notation of the expression is a
[image: image7.emf] b. In other words, an EXOR of a and b (Figure 2.1.1.3). Using a Karnaugh map, we can derive the AND/EXOR logic expression of the function whose behavior was specified by this KMap. This simple principle is the base of all new AND/EXOR synthesis methods introduced in this and next chapters. But the systematic principles of selecting the groups or by combining the groups to larger groups are not trivial and continue to be research topics [ref, ref]. You may contribute to this research if you will find out some really smart method for simplifying the AND/EXOR expressions.
The above example illustrates how the circuitry of a reversible function can be found through the utilization of Karnaugh maps and logic synthesis, leading to a reversible circuit. We will learn more about reversible circuits in Chapter 15, but let us observe that the definition of a reversible circuit is very easy. This is a circuit which is a one-to-one mapping between vectors of inputs and vectors of outputs. This can be checked for the Feynman Gate from Figure 2.1.1.1. The Feynman gate is thus a reversible gate, and also a reversible circuit. Every circuit composed from reversible gates can be also realized in quantum technologies, we call it the quantum circuit. There are other types of quantum circuits which we will discuss later on, but now we will concentrate on these quantum circuits that are reversible and use binary logic with values zero and one for signals. We call them reversible quantum circuits or permutative quantum circuits (for reason explained below).
For any single output Boolean function, we can write the Karnaugh map based on how the desired function transforms inputs into outputs. Similarly a function with many outputs can be described by m KMaps or by a single KMap with binary strings of length m in each cell. It is often more convenient to create directly a KMap from natural language specification of the problem rather than first create a truth table and next convert it to a KMap. Similarly as we have done in previous chapters, from the KMap, the designer can find groups and use various logic synthesis procedures to simplify the function into a collection of basic functions (OR, AND, EXOR) and so the designer can derive the circuitry of the desired function specification. The circuit with AND, OR and EXOR elements can be next converted to a reversible circuit, possible with some wires (inputs to the circuit) initialized to logic constants. The wires (bits) of the circuit that are initialized to constant values 0 or 1 are called the ancilla bits. Another method is to directly use reversible gates in the synthesis, which will be discussed in this and next chapters. Although KMap is useful to invent new methods and is used extensively in this book, it is only a means to design an efficient computer algorithm that executes the entire synthesis. We are designing circuits “by hand” in this book, but the student should be aware that the role of a human designer in 21-st Century is not to design quantum circuits using KMaps but to develop software to design quantum circuits and the role of (quantum) KMaps is of a didactic nature only. However, as we are still students, we will design here circuits from KMaps to get more experience and understanding of logic. Next, however, we will write software to synthesize quantum circuits automatically.
The Kmaps are useful in designing classical and reversible circuits, although in reversible and quantum logic other authors do not use them. As we will illustrate in the future, we found a way to use Kmaps also in truly quantum (non-permutative) circuit synthesis. We call them the Quantum QMaps. If the function is reversible, the Quantum Map and the Karnaugh Map are exactly the same.
[image: image1.png]00

01

11

10

Xy

2.2. From reversible gates to quantum gates.
2.2.1. Superposition and its visualization in Kmap.
In quantum computers, one is allowed to use only quantum states instead of the classical states. So, the spin of an electron or a polarization of a photon can be replaced by some abstract “quantum state”: the quantum bit (qubit for short). Just as a bit has a state 0 or 1, a qubit also has a state
[image: image8.wmf]0

or
[image: image9.wmf]1

. The difference between bits and qubits is that a qubit
[image: image10.wmf]g

 can also be in a linear combination of states
[image: image11.wmf]0

 and
[image: image12.wmf]1

 :

[image: image13.wmf]1

0

b

a

g

+

=

This above equation is in the so-called Dirac notation which is the standard notation for states in Quantum Mechanics and we say that kets
[image: image14.wmf]0

 and
[image: image15.wmf]1

 are in a superposition.
[image: image110.wmf]Å

Thus, the state
[image: image16.wmf]g

is a vector in a two-dimensional complex vector space with basis vectors
[image: image17.wmf]0

and
[image: image18.wmf]1

. The matrix (Heisenberg notation) representations of the vectors
[image: image19.wmf]0

 and
[image: image20.wmf]1

 are given by

[image: image21.wmf]1

0

é

ë

ê

ù

û

ú

 for State
[image: image22.wmf]0

 ,
[image: image23.wmf]0

1

é

ë

ê

ù

û

ú

 for State
[image: image24.wmf]1

. Thus
[image: image25.wmf]g

 =
[image: image26.wmf]a

0

é

ë

ê

ù

û

ú

 +
[image: image27.wmf]0

b

é

ë

ê

ù

û

ú

 =
[image: image28.wmf]a

b

é

ë

ê

ù

û

ú

is a vector of complex amplitudes.
Quantum mechanics tells us that if one measures the state |γ> one gets either
[image: image29.wmf]0

, with probability αα* (|α|2) , or
[image: image30.wmf]1

 with probability
[image: image31.wmf]*

bb

 (|β|2). Here, α* is the complex conjugate of α. If α was a complex number g + bj, the conjugate would be g – bj (j2 = -1). That is, measurement changes the state of a qubit. In fact, any attempt to find out the amplitudes of the state |γ> produces a nondeterministic collapse of the superposition to either
[image: image32.wmf]0

 or
[image: image33.wmf]1

 basis states (eigenvectors). If | α |2 and | β |2 are probabilities and there are only two possible outputs, then the calculation as in Figure 2.2.1.1 can be done. This is amazing, isn’t it? Nobody understands why this mathematics applies to the quantum world and what is the deep meaning of quantum phenomena. However, many experiments proved that this is how our Universe works. We will discuss more on quantum mechanics in the sequel, but now let us keep concentrated on the mathematics of quantum circuits as we will have to use it soon in practical applications.
Sum of all event’s probabilities is “1” so that

 | α |2 + | β |2 = 1

[image: image34.wmf]ï

î

ï

í

ì

®

·

=

®

·

=

ï

ï

î

ï

ï

í

ì

+

-

*

*

1

0

1

0

1

2

1

0

2

1

2

2

b

b

b

a

a

a

b

a

State

Basic

State

Superposed

Figure 2.2.1.1: Explanation of superposed states and their measurements.

 2.2.2. Calculating a quantum state using matrices.
Any quantum circuit, both small and very large, can be represented as a unitary matrix.

Arushi. Here please give a precise definition of the unitary matrix, Show examples of unitary matrices and non-unitary matrices. This is one of your tasks for the next version of this chapter.
The state of the quantum circuit (input state, internal state after any gate, or output state) is represented by a vector of complex numbers. The unitary matrix of the circuit when multiplied by the input state vector generate the output state vector. It is important to appreciate that this representation, the unitary matrix, remains the same for any size of the circuit. The smallest matrices represent single rotations of electrons or other particles, examples of them are Pauli rotations. Big matrices describe a complete quantum algorithm, such as the Grover algorithm, which can solve difficult problems much faster than any existing computer on the Earth, provided that it has a sufficient number of qubits. The circuit is an operator acting on the state vector. We can talk about the matrix of the operator, but we will use names “operator”,
“circuit”, “gate” and “unitary matrix” interchangeably.
A simple example of generating an output quantum state from the input state vector and the matrix of operator acting on the input state is shown in Heisenberg notation and next in Dirac notation in Figure 2.2.1.2. Heisenberg notation uses matrices and Dirac notation uses expressions with the so-called kets |0(and |1(.

[image: image35.wmf]1

2

1

1

1

1

1

0

1

2

1

1

1

2

0

1

2

1

-

é

ë

ê

ù

û

ú

é

ë

ê

ù

û

ú

=

é

ë

ê

ù

û

ú

=

+

Figure 2.2.1.2.: Matrix representation of state 0 going through Hadamard gate. Heisenberg notation uses matrices to describe operators and vectors for states. The Dirac notation is presented at the right. Here |0(and |1(are called “kets”.
In Figure 2.2.1.2 one can see how an input state reacts to the gate represented as a unitary matrix. What is shown is the input vector, state |0(, is acted upon by the Hadamard gate (Hadamard operator). When a circuit (Operator, Matrix) acts upon an input vector, it is simply multiplied by the matrix of the circuit, following the rules of standard matrix multiplication. The Dirac notation at the right of Figure 2.2.1.2 is more convenient for some symbolic calculations and interpretation. We will be therefore using both Heisenberg and Dirac notations in this book. We see from Figure 2.2.1.2 that the probability of measuring state |0(is ½ and that the probability of measuring state |1(is also ½. If |0 represents “dead” and _|1 represents “alive” the qubit from Figure 2.2.1.2. represents the quantum state “half dead and half-alive”, which is known as the property of the famous Schroedinger Cat and is also called the cat state. We will learn more about Schrodinger Cat in Chapter 19.
Arushi, explain about Schrodinger cat and these states.

[image: image111.wmf]Å

[image: image112.wmf]Å

[image: image113.wmf]a

2.2.2.1. Calculating the Kronecker Product on matrices.
 Given the means of calculating a gate’s matrix as given above, to find the operator matrix is not too difficult. The most essential part of this is how to deal with parallel gates. In a circuit, gates will be found “on top” of each other, in terms of wiring (levels of qubits). To calculate the operator matrix of two gates (circuits) connected in parallel we need the so-called Kronecker Product of the two matrices. We multiply (Kronecker-multiply) them from top to bottom. Kronecker multiplication of two gates entails the second matrix being multiplied by each element in the first, with the solution replacing the element of the first. In Figure 2.2.1.1 we illustrate Kronecker type of multiplication on binary matrices. Observe that these matrices can be of arbitrary dimensions, allowing thus to mix binary and ternary qubits into a single unitary matrix.
The Kronecker Product of two one-qubit gates is:
[image: image36.png]ay

av

bx
bz
dx

d=

o]
by

dy |
dv

The Kronecker Product of a two-state quantum system on top (a qubit) and a three-state quantum system at the bottom (a qutrit) is represented as follows:

[image: image37.wmf]
Figure 2.2.1.1: Example of Kronecker multiplication of 2×2 matrix A and 3×3 matrix B. This corresponds to a binary qubit on top and a ternary qudit (qutrit) on the bottom.
Please remember that the binary quantum bit is called qubit, ternary quantum bit is called qutrit and a general multiple-valued quantum bit is called a qudit.
Kronecker Products will create a large matrix for the first set of parallel gates of the circuit. Use this method until every set of parallels has its own matrix, and then multiply the matrices by each other, starting from the rightmost column towards the leftmost. Once this has been done, the operation matrix of the entire circuit will have been found.
[image: image114.wmf]a

[image: image115.wmf]Å

[image: image116.wmf]Å

2.3. States calculated by the Hadamard gate
In this section we will introduce the Hadamard gate. A quantum Hadamard Transform for two qubits can be done just by placing such gates in parallel (Figure 2.3.3) in the quantum array. A Hadamard Transform is known from classical binary circuits, and has applications in signal processing. It is a complex circuit in binary logic with many adders and subtractors connected by complex “butterfly” network. But Hadamard transform for any number of qubits becomes a very inexpensive and small circuit in quantum – just put the Hadamard gates in parallel! This is just one way to explain the power of quantum computing. The Hadamard gate is represented by a 2-by-2 matrix from Figure 2.3.1. Applying the gate to states
[image: image38.wmf]0

 and
[image: image39.wmf]1

 we obtain states that in Dirac notation are shown in Figure 2.3.2. The careful reader can think how we can draw the superposed states created by this gate in a quantum Kmap. We will come back to this question soon.

[image: image40.emf]1 1

1 -1

1

2

Figure 2.3.1: The Hadamard gate matrix.

[image: image41.wmf]
Figure 2.3.2 :Dirac notation of Hadamard outputs.

The Hadamard gate followed directly be the quantum measurement gate acts like an ideal random number generator, with one input and one output. When the Hadamard gate operates on inputs
[image: image42.wmf]1

 or
[image: image43.wmf]0

, the resulting outputs after measurement will be identical. Though the result for
[image: image44.wmf]1

 has a -
[image: image45.wmf]1

 entry instead of
[image: image46.wmf]1

, this is irrelevant in measurement since all probability amplitudes are squared if the output of H is directly measured (i.e., the global quantum phase is lost). The output state before the measurement (see Figure 2.3.2) represents an equal probability of states
[image: image47.wmf]1

 and
[image: image48.wmf]0

, but it represents also the phase. As the coefficient becomes the amplitude of both states, the square of it (1/2) becomes the probability of that state if this state is measured. In case of the measurement the phase is not relevant at all! However, before the measurement some next quantum operators can be executed on this state the phase of this state is relevant in such a case. This property of quantum states is very important. It is used for instance in the famous quantum Grover algorithm that will be presented in chapter 17.
The KMap of the Hadamard gate is shown in Figure 2.3.5. It is called Quantum Map or a QMap, because Hadamard gate, as you see in its unitary matrix, is not a permutative gate, since the unitary matrix is not a permutative matrix. The QMap of the gate gives the complete information about the output quantum states for all possible input basis states.
[image: image117.wmf]Å

.

In Figure 2.3.3 a Superposition state created by the Hadamard gate is shown. Figure 2.3.4 repeats these calculations using the Heisenberg notation. As often done by physicists, the coefficient
[image: image49.wmf]2

1

 is omitted in this particular calculation.
[image: image118.wmf]Å

[image: image50.emf]
Figure 2.3.3: The symbolic notation for a Hadamard gate that is controlled by various basis states.

[image: image119.wmf]a

[image: image120.wmf]2

1

0

d

b

a

g

+

+

=

[image: image121.wmf]0

[image: image122.wmf]1

Figure 2.3.4: Analysis of Hadamard gate applied to various input states.

Figure 2.3.5. illustrates the quantum K-map of the Hadamard gate.
	0
	0.7071
[image: image51.wmf]0

+0.7071
[image: image52.wmf]1

	1
	 0.7071
[image: image53.wmf]0

-0.7071
[image: image54.wmf]1

Figure 2.3.5: The Quantum Kmap of the output of Hadamard gate (from Matlab).

[image: image55.emf]
Figure 2.3.6: The EPR circuit that illustrates the concept of entanglement.
Now we will explain the basic resource of quantum computing, the phenomenon that exists only in quantum mechanics and that is responsible for difference of quantum mechanics and classical computing. We will do this using the famous EPR circuit which illustrates the “thought experiment” published by Einstein, Podolsky and Rosen. This circuit is given in Figure 2.3.6. and its corresponding quantum K-map in Figure 2.3.7. The quantum state in this table (QMap) have been verified using Matlab as in Figure 2.3.16.
	[image: image123.wmf]2

 b a
	0
	1

	0
	
[image: image56.wmf]11

2

1

00

2

1

+

	
[image: image57.wmf]10

2

1

01

2

1

+

	1
	
[image: image58.wmf]10

2

1

01

2

1

-

	
[image: image59.wmf]11

2

1

00

2

1

+

P, Q

Figure 2.3.7. The quantum KMap illustrating the output state of the EPR circuit. This KMap visualizes the entanglement from the circuit in Figure 2.3.6.
	[image: image124.wmf]1

0

b

a

g

+

=

 b a
	0
	1

	0
	0.7071
[image: image60.wmf]00

0
[image: image61.wmf]01

0
[image: image62.wmf]10

0.7071
[image: image63.wmf]11

	0
[image: image64.wmf]00

0.7071
[image: image65.wmf]01

0.7071
[image: image66.wmf]10

0
[image: image67.wmf]11

	1
	0.7071
[image: image68.wmf]00

0
[image: image69.wmf]01

0
[image: image70.wmf]10

-0.7071
[image: image71.wmf]11

	0
[image: image72.wmf]11

0.7071
[image: image73.wmf]01

-0.7071
[image: image74.wmf]10

0
[image: image75.wmf]11

Figure 2.3.8: Matlab simulation to find the Quantum KMap for EPR circuit.
[image: image76.emf]
Figure 2.3.9: A circuit similar to EPR circuit but the “EXOR down CNOT” was replaced with the “EXOR Up CNOT”.
The circuit from Figure 2.3.9 has been also verified with Matlab (Figure 2.3.10). As we see, by rotating the CNOT gate the entanglement is removed, as the quantum states from Figure 2.3.10 can be factorized to separate qubit states.
	[image: image125.wmf]0

 b a
	0
	1

	0
	0.5000 - 0.5000i

0

0.5000 - 0.5000i

0
	0

0.5000 - 0.5000i

0

0.5000 - 0.5000i

	1
	0.5000 - 0.5000i

0

-0.5000 + 0.5000i

0
	0

-0.5000 + 0.5000i

0

0.5000 - 0.5000i

 Figure 2.3.10. Matlab simulation QMap for the circuit when CNOT is

 controlled from the bottom bit (Figure 2.3.9). There is no entanglement.
[image: image126.wmf]1

We will analyze the EPR circuit soon and we will discuss its importance.
2.4. Visualization of states in larger gates.
2.4.1. The Feynman or CNOT gate
For illustration we will compare various notations for the same gate. This is the CNOT gate from Figure 2.3.6 used in EPR circuit above. Its permutative matrix is 4-by-4, as shown in Figure 2.2.2.1a and its KMap is shown in Figure 2.2.2.1b. Please compare the matrix and the KMap. Remember that the order in rows and columns in the matrix is natural binary code and not the Gray code as in KMaps.
 [image: image77.emf]
[image: image78.emf]1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

[image: image79.emf]ab

1

0

0

0,1

1,0

P,Q

0,0

1

1,1

c

a) b) c)
Figure 2.4.1: (a) Feynman gate, (b) Feynman gate matrix, (c) the KMap of the Feynman gate.
Many of CNOT properties have been already discussed here, but more will come. It is basically a reversible EXOR gate, reversible in that each qubit is continued to an output, unlike the classical EXOR. It is also deterministic, unlike the Hadamard, which means that a given input vector will always register the same output value. This gate is inexpensive in quantum and thus should be made the base of synthesis. This gate is linear and thus it is not universal. To make a universal system we will need one more gate – the Toffoli gate.
[image: image127.wmf]1

0

1

1

1

0

1

1

1

1

-

=

ú

û

ù

ê

ë

é

-

=

ú

û

ù

ê

ë

é

ú

û

ù

ê

ë

é

-

\

[image: image128.wmf]ú

û

ù

ê

ë

é

=

1

0

1

to

apply

Hadamard

2.4.2. The 3*3 Toffoli or CCNOT gate
The Toffoli gate is an interesting and powerful gate in that it can have any number of inputs and the EXOR can be located in any wire of it. To be of practical usage, it must take these many forms. The circuitry is as in Figure 2.4.2.1:

	[image: image129.wmf]1

0

1

1

0

1

1

1

1

1

+

=

ú

û

ù

ê

ë

é

=

ú

û

ù

ê

ë

é

ú

û

ù

ê

ë

é

-

\

 c

 ab
	0
	1

	00
	000
	001

	01
	010
	011

	11
	[image: image130.wmf]ú

û

ù

ê

ë

é

=

0

1

0

to

apply

Hadamard

110
	110

	 10
	100
	101

[image: image131.wmf]1

0

×

+

×

=

ú

û

ù

ê

ë

é

b

a

b

a

[image: image132.wmf]1

0

×

+

×

=

ú

û

ù

ê

ë

é

b

a

b

a

[image: image80.emf]a

b

c

p

q

r

 p, q, r
Figure 2.4.2.1: The 3*3 Toffoli gate. It is also called the Controlled-Controlled-NOT or the CCNOT gate. The right part of the figure shows the Kmap for this gate.
We can see that it is a double controlled inverter. One might think that the addition of another control would still make it a close relative of the Feynman. That is not so. For the Toffoli has 3 inputs, a, b, and c, and the designer can put constants in any of those positions, thus transforming the gate. By manipulations of this property, one can derive classical gates, and thus, prove that the Toffoli is a universal quantum gate.

The input/output relationship is p = a , q = b and r = ab
[image: image81.emf] c. Although Toffoli is a generalized form of the Feynman gate, the Toffoli gate is a universal gate in both classical and reversible (but not quantum) logic but the Feynman gate is not universal. On the other hand Feynman gate is Affine gate but Toffoli gate is not. These gates are then complementary and using them together leads to a synergy. With Inverter, Feynman, Hadamard and Toffoli we can create an arbitrary quantum circuit, but we will introduce more quantum gates for the designer’s convenience and for didactic reasons.
16.5. The 3 * 3 Fredkin or Controlled-SWAP gate

[image: image133.wmf]ú

û

ù

ê

ë

é

=

0

1

0

to

apply

Hadamard

[image: image82.emf]
Figure 2.5.1: Fredkin gate realized using Toffoli and CNOT gates. At right we illustrate algebraic analysis method using Boolean and EXOR algebra. As this gate has 3 inputs and 3 outputs we will call it a 3*3 gate.
Fredkin gate in quantum array form is analyzed as in Figure 2.5.1. It is important to note that one can view the Fredkin gate from a different perspective, other than AND/EXOR logic. This perspective is that of multiplexing between signals. This perspective on the Fredkin gate (not AND/EXOR logic) is used in Cellular Automata and Optical realizations and in some nano-technologies. This point of view is illustrated in Figure 2.5.2.

[image: image83.emf]0

1

0

1

a

b

c

P

Q

R

c

b

P = a a = 0

R = c

Q = b

c

b

P = a a = 1

R = b

Q = c

 (a) (b) (c)
Figure 2.5.2: (a) Fredkin gate represented symbolically with classical Multiplexers, (b) Fredkin gate at control input value a = 0,(c) Fredkin gate at control input value a = 1.
Understanding the Fredkin from multiplexers we can generalize Fredkin to arbitrary number of qubits. See Figure 2.5.3 below. Considerations like this have been used by us to create new synthesis methods.

[image: image84.emf]S = d

0

1

d

0

1

0

1

a

b

c

P

Q

R

S

c

b

P = a a = 0

R = c

Q = b

d

c

b

P = a a = 1

R = b

Q = d

S = c d

 (a) (b) (c)

Figure 2.5.3:(a) Generalized Fredkin Gate using classical multiplexers. (b) What Generalized Fredkin gate realizes while control input a = 0 and (c) What Generalized Fredkin gate realizes when control input a = 1.
[image: image134.wmf]ú

û

ù

ê

ë

é

=

1

0

1

to

apply

Hadamard

2.6. The Ancilla qubits

Ancilla qubits are extra qubits. They are not variables, though they can be mapped onto an output. Ancilla qubits are useful for input variables in 3*3 and larger gates, as well as on wires that lead to the output. In a large circuit, it is not always good to have every wire assigned to a variable input; the functions of the gates can be changed in useful ways if some of the wires are assigned to a constant. To explain its uses in large gates, one must look no further than the Toffoli. In order for the Toffoli to be of use, in many cases the wire that goes to the EXOR must have a constant value (1 or 0) to change its uses and allow it to be a universal gate. Those 1’s and 0’s are ancilla bits, since they are not input variables, and are constant. They can also be placed on wires leading to an output, whether it is because the ancilla bit was on the answer register of the final gate, or because it is simply more efficient to do so. Figure 2.6.1 illustrates how AND and NAND gates of classical logic can be built using the Toffoli gate with the lowest qubit being an ancilla bit. As we see in the example, ancilla bit is absolutely necessary if we want to convert a non-reversible function (called also an irreversible function) like AND or EXOR into reversible (quantum) circuit.
[image: image85.emf] [image: image86.emf]
 (a) AND (b) NAND
Figure 2.6.1: (a) Realization of AND gate using Toffoli gate with the ancilla qubit initialized to zero, (b) Realization of NAND gate using Toffoli gate with the ancilla qubit initialized to one.
[image: image135.wmf]1

0

1

1

0

1

1

1

1

1

+

=

ú

û

ù

ê

ë

é

=

ú

û

ù

ê

ë

é

ú

û

ù

ê

ë

é

-

\

2.7. Quantum Braitenberg Vehicles
[image: image87.png]il

I

Ik

[image: image88.png]ression

2.7.1. Classical Braitenberg Vehicles
Valentino Braitenberg wrote a revolutionary book titled Vehicles: Experiments in Synthetic Psychology (Publisher: Cambridge, Mass. MIT Press, 1986), [[Braitenberg86] 9]. In the book he describes a series of thought experiments. It is shown in these experiments that simple systems (the vehicles) can display complex life-like behaviors far beyond those which would be expected from the simple structure of their “brains.” He describes a law termed the “law of uphill analysis and downhill invention”. This law explains that it is far easier to create machines that exhibit complex behavior than it is to try to build the structures from behavioral observations. By connecting simple motors to sensors, crossing wires, and making some of them inhibitory, we can construct simple robots that can demonstrate behaviors similar to fear, aggression, affection, and others. The original vehicles use only analog signals or Boolean Logic in their controlling circuits, but we generalized these ideas to multiple-valued, fuzzy, probabilistic, and quantum logics and we designed “emotional robots” that combine various types of logic – a task which is easy when all control is simulated in software [45,46,47].

The first vehicle (Figure 2.7.1) has two sensors and two motors, at the right and left. The vehicle can be controlled by the way the sensors are connected to the motors. Braitenberg defines three basic ways we could possibly connect the two sensors to the two motors.

(a) Each sensor is connected to the motor on the same side.

(b) Each sensor is connected to the motor on the opposite side.

(c) Both sensors are connected to both motors.

Type (a) vehicle will spend more time in places where there are less of the stimuli that excite its sensors and will speed up when it is exposed to higher concentrations. If the source of light (for light sensors) is directly ahead, the vehicle may hit the source unless it is deflected from its course. If the source is to one side, then the sensor nearer to the source is excited more than the other and the corresponding motor turns faster. As a consequence, the vehicle will turn away from the source. Turning away from the source (a shy behavior) is illustrated at left in Figure 2.7.2.

We can observe another type of vehicle, type (b), with a positive motor connection. There is no change if the light source is straight ahead, a similar reaction as seen in type (a). If it is to either side, then we observe a shift in the robot’s course. Here, the vehicle will turn towards the source and eventually hit it. As long as the vehicle stays in the vicinity of the source, no matter how it stumbles and hesitates, it will eventually hit the source frontally. If the two vehicles are let loose in an environment with sufficient stimuli, their characters emerge. The type (a) vehicle with a positive connection will become restless in its vicinity and tend to avoid stimuli until it reaches a place where the influence of any light sources is scarcely felt. This vehicle exhibits fear. A vehicle of type (b) with a positive connection turns toward the source of light and impacts with it at a high velocity. The aggressive behavior is displayed clearly.

Next, Braitenberg presented thought experiments with increasingly complex vehicles built from the standard mechanical and electrical components of his time. Braitenberg’s goal was to explore the nature of intelligence and psychological ideas that were not related to quantum control. Even so, more and more intricate behaviors emerge from creating various interactions between components; see [[Braitenberg86],28,39,14,15]. The “vehicles” that we worked on are not merely mobile wheeled robots like those from [Braitenberg86], but humanoid bipeds [56,64,29,30,38,44,68], human and animal torsos with heads [58,45,46,41], so that we can create much more interesting and sophisticated movements, although the general principle of behavioral robotics as illustrated in Braitenberg Vehicles (the evolution of complex behaviors from simple descriptions) remains. As will be discussed, multiple-valued quantum automata hold many advantages over simple binary combinational circuits. Since 2005, our teenage pre-college students built several Lego robots [62,63,57], using both old and new Lego sets:
1) several 2-wheeled and 4-wheeled vehicles similar to classical Braitenberg vehicles,
2) robot head “Mister Quantum Potato Head” to illustrate human-like emotions,
3) a walking biped.
The new 2006 Lego set (Lego NXT) gives much better opportunities which are being now investigated. At first we will present Lego robots as they are inexpensive and easy to build. The Lego robots were controlled from programs in NQC-Not Quite C- language [54,69] software but we use Visual Basic, Matlab, C, C++, Java and Lisp in our other projects to simulate quantum circuits, controllers and algorithms.

2.7.3. Practical use of binary and ternary quantum formalisms in robot control design.
We will generalize now the binary quantum logic to ternary quantum logic. It is easy. As we have two basis vectors 0 and 1 corresponding to logic states 0 and 1, respectively in binary quantum logic which operates on qubits, we will have three basis vectors 0, 1 and 2 corresponding to logic states 0, 1 and 2, respectively in the ternary quantum logic. In ternary logic we use qutrits instead of qubits. Both qubits and qutrits are examples of multiple-valued quantum bits called in general qudits.

In quantum circuits, to calculate a quantum state after the gate, the unitary matrix of the gate is multiplied by the vector of the state before the gate (Heisenberg notation). A general purpose controlled quantum gate is shown in Figure 2.7.3. In the case of binary control bit S1, the gate operates as follows:

if S1 = 0
then
M2 = S2

if S1 = 1
then
M2 = U (S2)

In the case of ternary control, the controlled gate operates as follows:

If S1 = 0 or S1=1 then M2 = S2

If S1=2 then M2 = U(S2) where U is an arbitrary binary or ternary quantum operator.

Fig. 2.7.4 presents the truth table of the ternary gate, assuming that the operator U is adding 1 modulo 3. We assume the following interpretation of ternary signals in sensors S1 and S2: 0 – nothing, 1 – little, 2 – much. This applies also to the output signals to motors M1 and M2 (see Fig. 2.7.1). At the right of Fig. 2.7.4, we describe the behavior of a Quantum Robot with this gate as its brain. Fig. 2.7.5a shows two examples of many Lego robots with Braitenberg and Quantum Braitenberg architectures built by us. Others are shown in Figs. 2.7.5b, 2.7.5c. The quantum controlled gates can find a number of interesting applications in our Quantum Robots. These gates are realizable directly in quantum devices, while gates like Toffoli are realized using many connected 2-qubit quantum controlled gates. At the beginning, however, we assume the use of only NOT, CNOT, CCNOT, Fredkin, SWAP and general controlled gate.

A quantum gate operating in parallel with another quantum gate will increase the dimensions of the quantum logic system represented in matrix form. This is due to application of the Kronecker (tensor) product of matrices to the system.
A quantum gate in series with another quantum gate will retain the dimensions of the quantum logic system. The resultant matrix is calculated by multiplying the operator matrices in a reverse order (standard matrix multiplication). With this background, a teenage Lego robot builder can construct and analyze quite complex robot controllers with deterministic behaviors (they have permutative unitary matrices). Now the students raise a question – “where is the quantumness?” and the time comes to introduce the notation and the unitary matrix of a very important quantum gate – the Hadamard gate (Fig. 2.7.6a). This is a “truly quantum” gate that cannot be realized in a binary or permutative reversible circuit. This is in contrast to permutative gates (described by permutative matrices) that can be realized by standard reversible logic circuits.
An equivalent of the Hadamard gate in ternary logic is one of the Chrestenson family of gates and their generalizations [Bae07]. The complex third order root of unity is

[image: image89.wmf]866

.

0

5

.

0

3

2

sin

3

2

cos

3

2

i

i

e

a

i

-

-

=

P

-

+

P

-

=

=

P

.

Kronecker Matrix Multiplication is responsible for the growth of qubit states such that N bits correspond to a superposition of rN states, whereas in other digital systems, N bits correspond to rN distinct states. The number r denotes the base (radix) of logic, being 2 for binary, 3 for ternary logic and 4 for quaternary logic.

[image: image90.png]s1

s2

[

mz

	S1

(right)
	S2

(left)
	M1
	M2
	Robot behavior

	0
	0
	0
	0
	No light. Robot stops.

	0
	1
	0
	1
	Little light from left. Robot turns slowly away from light. Makes right turn.

	0
	2
	0
	2
	Much light from left. Robot turns quickly away from light. Makes right turn.

	1
	0
	1
	0
	Little light from right. Robot turns slowly away from light. Makes left turn.

	1
	1
	1
	1
	Little light in both sensors. Robot moves slowly forward.

	1
	2
	1
	2
	Little light from right, much from left. Robot turns away from light using larger circle.

	2
	0
	2
	2
	No light from left, much from right. Robot moves quickly forward.

	2
	1
	2
	0
	Little light from left, much light from right. Robot turns quickly left.

	2
	2
	2
	1
	Much light in both sensors. Robot turns slowly left.

[image: image91.jpg]

[image: image92.jpg]

[image: image93.png][N

1
Sl

Hadamard Gate

Figure 2.7.7a shows the Chrestenson gate matrix CH and its square CH2. Generalizations of this gate are shown in Fig. 2.7b, c together with their squares. As we see, permutative gates (12), (02) and (01) are created, as defined in Fig. 2.7.7b, c. This shows that 2 out of 3 Chrestenson gates create a universal logic system for permutative logic. Connecting two Hadamard gates in series we obtain the input signal back – so they work together as a wire (identity). However, measuring the intermediate signal would give ½ probability of |0(and ½ probability of |1(. Similar properties are analyzed next for two Chrestenson gates, and even more amazing results are found – we create useful permutative gates that are also universal from them. It is unlike in the binary case and differences of quantum logics of various radixes are discussed.

An example of a binary unitary and permutative matrix is the Feynman gate (Fig. 2.7.4.8). A permutative matrix has exactly one ‘1’ in every row and column. MV Feynman gate uses modulo addition of A and B, ternary in our case.

The quantum circuit from Fig. 2.7.4.9 can be split into 3 circuits as shown below. Here, the Hadamard gate (gate Y in Figure 2.7.10) is connected in parallel to a wire (gate Z in Figure 2.7.4.10). Next, the parallel connection of gates Y and Z is in a series with the Feynman gate (gate X in Figure 2.7.4.12). We need the Kronecker Product to calculate the parallel connection and standard matrix multiplication to calculate the serial connection. This is shown step-by-step in Figures 2.7.4.9 through 2.7.4.13.

[image: image94.wmf](

)

2

1

0

1

0

1

0

0

0

0

1

0

3

0

3

0

0

0

0

3

3

1

1

1

1

1

1

1

1

1

3

3

1

1

1

1

1

1

3

1

1

1

1

1

1

3

1

4

2

3

3

3

3

3

3

4

2

2

2

2

2

2

2

2

2

=

ú

ú

ú

û

ù

ê

ê

ê

ë

é

=

ú

ú

ú

û

ù

ê

ê

ê

ë

é

=

ú

ú

ú

û

ù

ê

ê

ê

ë

é

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

=

ú

ú

ú

û

ù

ê

ê

ê

ë

é

×

ú

ú

ú

û

ù

ê

ê

ê

ë

é

=

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

CH

[image: image95.wmf](

)

2

0

0

0

1

0

1

0

1

0

0

1

1

1

1

1

1

1

1

1

1

0

2

2

2

2

2

2

=

ú

ú

ú

û

ù

ê

ê

ê

ë

é

=

ú

ú

ú

û

ù

ê

ê

ê

ë

é

×

ú

ú

ú

û

ù

ê

ê

ê

ë

é

=

a

a

a

a

a

a

a

CH

[image: image96.wmf](

)

1

0

1

0

0

0

0

1

0

1

0

1

1

1

1

1

1

1

1

1

1

3

2

2

2

2

2

=

ú

ú

ú

û

ù

ê

ê

ê

ë

é

=

ú

ú

ú

û

ù

ê

ê

ê

ë

é

×

ú

ú

ú

û

ù

ê

ê

ê

ë

é

=

a

a

a

a

a

a

a

a

CH

[image: image97.png]R
oo~

Feynman Gate

 [image: image98.png]-ogo
o<-orx

oo~

[image: image99.png]

[image: image100.png]Kronecker Product Rule

o= o=
-0 a0

ohs o=

M1

o =0

We will analyze now the behavior of the circuit from Fig. 2.7.4.9. Suppose that we set each input A and B to state 0. Thus, the input state vector is |0((|0(= |00(= [1 0 0 0] T, where T denotes the transpose matrix. Now, we want to calculate the quantum state at the output of the entanglement circuit at points P and Q. To do this, we must multiply the matrix M3 (a linear operator) from Figure 2.7.4.13 by vector [1 0 0 0] T, which leads to vector 1/(2 [1 0 0 1]T . For a better visualization, this last vector can be rewritten in Dirac notation as: 1/(2 |00(+ 1/(2 |11(.
 [image: image101.png]1000
0100
0001
0010

M2

 [image: image102.png]M3

M2

This means that we obtain a measurement of state |00(with probability ½ and a measurement of state |11(with probability ½. Measuring the first bit as |0(, we automatically know that the second bit is also |0(due to the states being unique and unfactorizable. Similarly, measuring the second bit as |1(, we know that the first bit is in state |1(. As we already know, this strange phenomenon is called entanglement. If we measure qubit P = |0(we know that the other qubit Q also collapses to state = |0(. If we measure qubit P = |1(we know that the other qubit Q also collapses to state = |1(. This happens even if qubit P is on Earth and qubit Q on the Mars. How is this possible? Einstein told that this cannot happen, but he was wrong. Nobody understands this and have just to live with this mystery, at least for some time.

Assume now that signals A and B come from sensors S1 and S2 as in Fig. 2.7.4.1a, and P and Q go to motors M1 and M2. Assume also that 0 signifies no light to the sensor and 1 is light, and that 0 is no motor movement while 1 is full speed forward movement. If there is no light in front of the robot, the robot will randomly either stay stable (both motors have 0) or will move forward (both motors will have 1). The combinations 01 and 10 for the motors are not possible because their corresponding eigenstates have null amplitudes. The robot cannot thus turn right or left in this situation. It is left to the students to analyze behaviors of this robot for every possible binary input combination. Next the students can analyze what will happen if gate H is removed from the controller. Can the robot turn left and right? Does there exists an entanglement between states |01(and |10(, which would mean that the robot would never stop or go straight but keep turning left and right randomly? When? This is the kind of challenge questions asked the students.

Observe that if we had two H gates in parallel as the controller and there were no light present, then every combination of motors 00 (stop), 01 (turn left), 10 (turn right), and 11 (go forward) would be possible with equal probability. When measured, the Hadamard gate works as ideal random number generator. It can be controlled by an arbitrary quantum signal that allows us to control the probabilistic and entangled behaviors of the robot. Suppose that the Hadamard gate in Fig. 2.7.4.9 is controlled by one more wire D. If D = 0, the circuit is just a Feynman gate, which means that when both sensor inputs A and B are 1, signal P is 1 but signal Q is 0 (since 1(1 = 0) and the vehicle will turn right. Similarly, we can find deterministic behaviors of the vehicle for any input combination. However, when D = 1, the Hadamard gate starts to operate and the circuit works as the explained earlier entanglement circuit.

As we discussed at the beginning of this chapter, every combinational circuit (non-reversible) can be transformed into a reversible (permutative quantum) circuit by adding so-called ancilla bits (constants to inputs and garbage bits to outputs). In this way, we can transform every standard automaton (Finite State Machine with binary flip-flops) to a (binary) quantum automaton. Because the Hadamard gate works as an ideal random number generator, with equal probabilities of signals 0 and 1 at its output, every probability with accuracy to 1/2N can be generated with N controlled Hadamard gates. In the case of ternary quantum logic, the Chrestenson gates allow one to obtain probabilities with accuracy (1/3)N
[image: image103.png]

 [image: image104.jpg]

[image: image105.emf]s1

00

(oo)

1/2

, (11)

1/2

01

(o1)

1/2

, (10)

1/2

11

(o1)

1/2

, (10)

1/2

10

(oo)

1/2

, (11)

1/2

(a) (b)

(c)

(d)

C

S1

S2

M2

M1

C2

S1

S2

M2

M1

0

S1

S2

garbage

garbage

0

M1

M2

H

C1

garbage

garbage

[image: image106.emf](a)

C

S1

S2

M2

M1

H

Mood

Combinational logic with

probabilistic entangled

results

memory

m1

m1

md

Calculations in

Hilbert Space

measurements

This allows realization of an arbitrary probabilistic automaton in quantum (at the price of adding the ancilla bits). The deterministic automaton is a special case of a probabilistic automaton (a probabilistic automaton can be described by a probabilistic matrix, and a deterministic automaton by a permutative matrix). Finally, the quantum circuit (like our entanglement circuit) can be represented by a unitary matrix with complex numbers for transitions. Therefore, the quantum automaton is the most powerful concept of computing that is physically realizable at the time of this writing. It includes the combinational and probabilistic functions and automata as well as quantum combinational functions (quantum circuits) as its special cases.

However, this powerful concept has been so far not investigated for robotics applications and in general, very little practical work about quantum automata has been published. There is no doubt that the Quantum Automaton Robot is much more powerful than a Braitenberg Vehicle, which fact we have observed by constructing and simulating multi-valued quantum equivalents of the known Braitenberg Vehicles. A simple Quantum Automaton Robot controller is shown in Fig. 2.7.4.15. This controller can be used with similar but not exactly the same effects in all Lego robots. Observe entanglement for S1 = 0, S2 = 0, C = 1.

2.16. Biped robots need fast perception and motion planning.
The research on robot emotions and methods to allow humanoid robots to acquire complex motor skills is recently advancing at a very fast pace [Breazeal02, Breazeal99, Brooks98, Badler94, Badler79, Honda, Huang01, Human07, Human07a, Perkowski05]. However, assigning simple emotions like “fear” or “anger” or behaviors like obstacle-avoidance to wheeled mobile robots as in Braitenberg Vehicles or subsumption architecture [Kim06, Raghuvanshi07, Brooks91, Brawn06], although very useful and of historical importance [Braitenberg86] is practically insufficient to cover all necessary behaviors of future household “helper robots” [Green00]. Because humans attribute emotions to other humans and to animals, future emotional robots should perhaps be visually similar to humans or animals, otherwise their users would be not able to understand robots’ emotions and correctly communicate with them. Observe that the whole idea of emotional robot helpers is to enable easy communication between humans and robots. Therefore we believe that future emotional robots will be humanoid or at least
partially human-like.

Here we propose to use the Orion system from DWAVE Corporation [DWAVE07] as the first ever prototype of a quantum computer controlled humanoid robot. One has however to remember that Orion is still slower than a PC, so this robot will be still a prototype only of a future practical quantum-controlled robot. Only if DWAVE will deliver on its promise to scale significantly the Orion system, the quantum control will speed-up the constraint satisfaction algorithms for problems of practical size to demonstrate quantum robot superiority.

Now we will discuss how quantum search algorithms can be used to build sophisticated robot controllers. It is our hope that the intelligent biped robots will be an excellent medium to teach emotional robotics [Breazeal99], robot theatre [Perkowski05], gait and movement generation [Ryman84, Schiphorst92], dialog [Perlin96] and many other computational intelligence areas that have been not researched yet because of high costs of biped robots.

[image: image107.png]

 [image: image108.jpg]

 [image: image109.jpg]

We develop symbolic approach to robot specification based on a Common Robot Language [Lukac06]. While the syntax of this language specifies rules for generating sentences (that represent movement, dance, speech, dialog, etc), the semantic aspects describe structures for interpretation [Badler79, Calvert93]. Every movement or dialog behavior is described on many levels; for instance every joint angle or face muscle are low level descriptions, and complete movements such as pushups or joyful hand waving are at a high level. These aspects serve to describe interaction with environment at various levels of description. It uses also the constraint satisfaction problem [Kumar92, Mackworth77] creating movements that specify constraints of time, space, motion style and emotional expression. Non-deterministic, probabilistic and entangled behaviors are possible within the framework of constraints, allowing more natural behavior of the robot where the movements are logical but not exactly the same in similar environmental or emotional situations. Mechanisms for scripting and scenario writing [Perlin96] are also necessary. Humanoid robot movements and emotional behaviors require special notations that take their origins from human emotional gestures and movements such as dances, sport-related and gymnastic movements as well as theatre-related behaviors. These notations and languages originate from choreography, psychology and general analysis of human behavior. Several notations describing human dances exist using Benesh notation, [Causley80, Ryman84], LifeForms [Schiphorst92] and others. The goal of our Common Robot Language is to describe human-oriented movements, but it exceeds these behaviors to those like anthropomorphic animals and fairy tale characters. OpenCV version 3.1b [OpenCV] and the Human Body Project (HBP) software [Human07, Human07a] were used in the framework of a state machine to control behaviors mimicked from a human standing in front of the camera. We wanted the KHR-1 to mimic human motion that was being shown on the screen by the HBP software. The HPB works by taking an image of a person’s upper body. It then will try and identify the face. Once it can recognize a face it will then look at the body. The image that it acquires is converted to a set of feature values (parameters) assigned to several groups of behavior-controlling variables. The OpenCV software has proven not very responsive to movement and runs poorly on the laptop computer. It is possible that different computer hardware would better run the software or new software would need to be developed. There are many variables in the Human Body Project software that indicate relative position of the eyes, nose, mouth, and arms of the subject. It is definitely possible to use these to make the robot behave in much more complicated fashions. The video demonstrates the processing speed becoming the bottleneck. Another major restriction that we ran into was that the HBP was not a 100% at recognizing the body positions. We found that the robot is very sensitive to non-body objects in the background. We experienced the best performance standing in front of a white wall wearing a dark, solid-color sweater and lit from the front with auxiliary lighting. Even under these conditions, the HBP software recognized body and mouth position correctly only about half the time. Hence, we modified our state machine to respond to gross body movements that were most reliably recognized by the software. This was accomplished by writing a subroutine which tracked the robots arm positions and mouth opening size. The commands from this state machine were sent to the robot whenever the avatar from the HBP software ran the ShowAvatar routine. (Avatar is a small graphic representation of yourself as a little humanoid as seen by the camera). Placing a function call to the State Machine function at the end of the ShowAvatar routine provided the trigger mechanism for the state machine function.

The main weakness of the robot vision software like OpenCV/HBP is their slow speed. Your actions will need to be slow and you will need to hold them until you get the visual feedback from the HBP that it has seen your movement. That is indicated when the avatar moves and holds the new position. Therefore, to speed up the image recognition we plan to use the Orion quantum computer in the next project.

2.9. Conclusion.
The chapter introduced the basic concepts of quantum circuits and next the concept of robots controlled by quantum controllers and quantum algorithms. In general, the quantum logic applied in these controllers can be of binary, multiple-valued, fuzzy or mixed types. There will be more on logics other than binary and ternary in next chapters.

All concepts from this chapter will be extended and generalized. For instance, in next chapters we will present several types of robot controllers: combinational mappings, state machines, oracles and spectral transforms. Other concepts that will be introduced include quantum cellular automata, quantum associative memories, quantum neural networks and quantum subsumption architectures [Perkowski05]. It can be shown that such systems have higher potential to describe mixed deterministic/probabilistic/entangled behaviors of robots than the classical robotic controllers. The student may investigate trade-offs between deterministic, probabilistic and entangled behaviors by tuning rotation angles in gates. The research goal of our project is to investigate these concepts further. The quantum emotional humanoid robots are already a subject of a Ph.D. Thesis by Martin Lukac [Lukac06]. One of the goals of this chapter is to help our teen students to start with this new and exciting research area. The Lego NXT kits are already a widely accepted international education platform. In our projects we work also with servo-controlled robots and (in undergraduate classes) also with bipeds KHR-1. Bipeds are a future robot of choice also for the teen program.

Add information from papers from Israel.

P = a,

Q = (b� EMBED Equation.3 ���c) � EMBED Equation.3 ���(ab� EMBED Equation.3 ���c� EMBED Equation.3 ���) = b� EMBED Equation.3 ���� EMBED Equation.3 ���ca

R = a.(b� EMBED Equation.3 ���c) � EMBED Equation.3 ��� c = ab� EMBED Equation.3 ��� c� EMBED Equation.3 ���

Changes are only when a = b = 1

History

Valentino Braitenberg

Resources for teachers.

The research of PSU Intelligent Robotics Laboratory concentrates on humanoid robots to express emotions [Lukac07a, Lukac06]. The research of M. Lukac uses human-like faces and head/neck body combinations [Lukac07]. KAIST theatre [Perkowski05] used whole-body stationary robots with hands. However only a walking biped robot can express the fullness of human emotions by its body gestures, dancing, jumping, gesticulating using hands. Unfortunately larger biped robots are very expensive, in range of hundred thousand dollars. Fortunately in recent years several small humanoid robots became available for research and entertainment [Albert, Human07, Human07a, Robosavvy]. We acquired two KHR-1 robots [KHR-1] and integrated them into our robot theatre system with its various capabilities such as: sensors, vision, speech recognition and synthesis and Common Robot Language [Lukac06, Williams06]. OpenCV software from Intel [OpenCV] is used for image acquisition and robot vision algorithms. A popular approach to solve many motion planning and knowledge-based behavior problems for humanoid robots is the Constraint Satisfaction Model [Fromherz01, Gualandi04, Huang01, Kumar92, Mackworth77, Minton90, Waltz75, Wong89]. Unfortunately, for future robots large problems should be solved in real time which will require powerful computers. Observe that while MIT Cog [Brooks98] planned to use interaction with environment as a base of learning, it has no walking capability, thus its access to environment is limited. On the other hand the walking robots such as Honda [Honda] have much developed walking ability giving them access to powerful environmental information, but they lack learning abilities and sophisticated models of environment. Combining both approaches is an ambitious task which can be successful only if large motion-planning/obstacle-avoidance tasks will be executed in real-time and will include machine learning [Lukac07, Badler94, Choi98, Lukac06, Lukac03]. Emotional biped robot exhibits a much broader library of movements and behaviors than a mobile service robot, for instance gesture-related path planning of both hands and the whole body while walking in a room environment is a very difficult task [Lim99, Nakata98]. One way of solving the computer speed problem is to use quantum computers which will give significant speed-up [Nielsen00, Perkowski05, Perkowski07]. Gradually all these advanced topics will be shifted to the teen program, depending on the interests of particular participants of this program.

Resources for teachers.

Observe that in one more variant, the measurement gates from the feedback loop as in Fig. 2.7.4.15 may be removed, which leads to the concept of quantum automata with quantum memory, making a link to certain realizations of Grover algorithm (see next chapters).

Also, networks of such automata can be analyzed for emotional behaviors [Lukac07, Lukac06] and hierarchical automata (subsumption architectures) can be created. These will be discussed also in next chapters.

Resources for teachers.

As illustrated above the students learn several formalisms to describe quantum circuits helpful in efficient analysis of robots. Another challenge would be to guess the controller circuit from the observed behaviors of the robot. When students understand the concept of entanglement in EPR circuit from Fig. 16.7.4.9, they build the EPR robot with this circuit as its controller. Now they can experiment with various sensors, drives, kinematics, and unitary matrices in their software, allowing to create many interesting robots with sometimes unexpected behaviors [Raghuvanshi06, Song06]. Arushi built about 30 different robots to experiment with and documented their behavior in her report [ref].

Resources for teachers.

Similarly to binary EPR circuit, we can introduce ternary entanglement circuits with the Chrestenson gate instead Hadamard gate and Ternary Feynman gate instead the binary Feynman gate. These circuits are analyze using unitary matrices of ternary circuits and used in robot controllers.

Next we introduce fuzzy and quantum fuzzy controls for our robots. This is done in similar elementary ways, with many examples, as will be presented in next chapters. The students experiment with these controls in various robotic setups [Perkowski07]. Consequently, they are able to understand well the robotic architecture as a mapping from inputs – the sensors to outputs – the effectors such as motors, lights and speakers/buzzers. They are also able to combine various types of logic to create such mappings.

Definition 2.2.

The state� EMBED Equation.3 ���in ternary quantum logic is called a superposition of the states � EMBED Equation.3 ���,� EMBED Equation.3 ��� and � EMBED Equation.3 ��� with amplitudes α, β and δ.

Where α, β and δ are complex numbers such that | α |2 + | β |2 + | δ |2 = 1 and :

 | α |2 is a probability of measuring |0(

 | β |2 is a probability of measuring |1(

 | δ |2 is a probability of measuring |2(

Similarly one can define a quantum logic for 4, 5, and any other radix of logic (number of logic values).

Resources for teachers.

Many methods to synthesize quantum combinational circuits (of binary, multiple-valued and fuzzy types) and quantum automata have been developed by our research team [Bae07, Giesecke07, Giesecke06, Hung06, Khan06, Khan05, Khan05, Khan06, Kumar07, Lee06, Lukac03, Lukac06, Perkowski05, Song06, Yang06, Yang05]. Some of them are taught to the teen team which allows them to design complex oracles for Grover algorithm and quantum spectral transforms. It was found that when the multiple-valued logic concepts are taught to beginners together with binary logic, they have no particular troubles to grasp the multiple-valued concepts. It is however, important to make sure that they remember the complex numbers from high school. This material is a very good refreshment of complex numbers and exponentiation. We will denote square root of -1 by either j or i.

History

Fredkin

History.

Richard Feynman.

Tools

MATLAB Arushi explain

History

Kronecker Arushi explain.

History

Heisenberg

History

Dirac

History

Jacques Hadamard Arushi, find about him and write here. It would be especially interesting if you will find about him when he was young, was he a genius already? Complete the historical notes for Dirac, Heisenberg and other scientists mentioned in this chapter. They are role models for smart teens.

History.

Tommaso Toffoli (1943 -) is a professor of electrical and computer engineering at Boston University since 1995. He was born in Montereale Cellina, in north eastern Italy, and raised in Rome. He received his doctorate in physics from the University of Rome (1967) and a Ph.D. in computer and communication science from the University of Michigan (1976). He was on MIT faculty 1977-1995. Toffoli worked on Cellular Automata and Artificial Life with Edward Fredkin and Normen Margolus. He invented the Toffoli gate.

Resources for teachers.

Observe that the quantum KMap is just another form of illustrating output quantum states of a gate for all input quantum vectors. The QMap has however more information than the truth tables or vectors. We can find certain patterns in these maps. This information is useful in analysis and synthesis processes to those users who understand well functional patterns in classical KMaps. Let us observe that the entries inside the binary cells of the QMap are no longer binary but are usually superposed or even entangled values. (we will explain the entanglement soon).

Definition 2.1.

The state� EMBED Equation.3 ��� is called a superposition of the states � EMBED Equation.3 ��� and � EMBED Equation.3 ��� with amplitudes α and β (α and β are complex numbers).

Resources for Teachers.

The teachers should explain students what is the importance of the AND/EXOR base of logic as contrasted with the familiar AND/OR logic. This book shows how this kind of logic can be implemented and realized. When analyzing such circuits it is important to use in a new way the Karnaugh maps (K-maps) that we introduced and perfected in chapter 6. The students have to learn how to overlap groups in the map – using these new ways of overlapping. New circuits and new circuit types have been invented this way, which fact should enthuse the students to become masters of KMaps.

We use many KMaps in this book; standard KMaps introduced earlier, and their generalizations presented in this chapter. These maps will help us to find patterns in Boolean, multiple-valued, multiple-valued-input-binary-output and quantum functions, and next to use these patterns for efficient synthesis. All synthesis methods in classical logic are based on patterns, the special classes of functions (such as the symmetrical, linear, affine, or unate functions from previous chapters) have their specific patterns in KMaps. Therefore, being able to find new types of patterns and use these patterns in synthesis is very important when you will be asked to create new logic synthesis methods for new types of logic. The students should be challenged to find new types of circuits and new types of algorithms to synthesize such circuits. May be they will find them? If not, they will reinvent the existing methods which should be also stimulating to them. We give problems at the end of the chapter for the students to master these skills.

Resources for teachers

Our approach allows for investigation of all kinds of advanced robot control and computational intelligence ideas [Perkowski05]. It is a great source of projects for all kinds of robotics classes, from beginners to very advanced. This project was possible thanks to the availability of software package NQC which gives nearly full power of C programming in Lego robot environment. The future users can easily add other sensors and effectors – many of them exist already for Lego and many more can by purchased in robot shops on the Internet. We continue our “quantum robotics for teenagers” in year 2006/2007 and our projects include use of Matlab for calculations, evolutionary robot design [Khan06], quantum transforms and their use in robot vision [Beach03, Curtis04, Perkowski07]. In the undergraduate project, KHR-1 is now able to mimic upper body human motions. Students who work on this project learn about robot kinematics, robot vision, state machines (deterministic, non-deterministic, probabilistic and quantum - entangled) robot software programming and commercial robot movement editors. The most important lesson learned is the integration of a non-trivial large system and the appreciation of what is a real-time programming. It is important that the students learn to develop a “trial and error” attitude and also how to survive using a non-perfect and incomplete documentation. In this research direction the interface to Orion system will be learned and how to formulate front-end formulations for various robotic problems as constraint-satisfaction problems for this system.

Resources for teachers.

Students learn the concept of a circuit controlling another circuit, data path versus controls, hierarchical control and distributed control. All this is reinforced with NQC programming. In contrast to standard Lego robot builders who just “hack”, our students can refer to several theoretical models while they write their final software codes. The teachers should also use this opportunity to review and reinforce the concepts of finite automata, as related to robots.

Resources for teachers.

Hadamard gates and other gates presented here are realized from Pauli rotations that we will introduce in next chapters. By analyzing Pauli rotations needed to realize binary and MV gates high school students review complex numbers, group theory and matrix calculus useful also in robot kinematics. This gives them also a link to NMR and ion trap realizations of quantum computers.

We use the Chrestenson gates similarly to both Hadamard and V (Square Root of NOT) gates in binary quantum circuits and we can control these gates using binary and ternary quantum wires. All these topics will be introduced in next chapters. Thus, very quickly our students understand many gates and can experiment with multiple-valued (MV) and hybrid quantum controllers, a subject of current research in graduate institutions. They have to review trigonometry, complex numbers and linear algebra. For instance, in order to understand the function of the complex entries, the students should be familiar with complex exponentiation. Unitary matrices, when used as operators, preserve the sum of state vector amplitudes. In consequence, note that since all roots of unity have moduli of 1, they do not affect the probability of measuring an eigenstate when multiplied by an already existing amplitude coefficient.

All these concepts can be mastered using robots behaviors, but will serve many other aims in the next chapters.

Resources for teachers.

Kronecker Product (Tensor Product) is an algebraic operation that high school students are not familiar with. The teacher should pay attention that the students understand how to perform this operation on arbitrary sizes and shapes of matrices (and vectors as special types of matrices).

 It is recommended that students use Matlab to perform all calculations on matrices larger than 8*16. We verified many results from this book using Matlab [MATLAB] or QuiddPro software [QuIDDPro], and all quantum algorithms will be also verified in future. It helps students’ understanding when they are able to simulate their quantum circuits and algorithms. In our experience teens learn Matlab very quickly, at least the useful for us here part of it, but it is good if somebody will help them to install and run Matlab at the beginning.

History. Albert Einstein.

Einstein, Podolsky and Rosen. Arushi write here the interesting story how Einstein was wrong and Bell proved him to be wrong and why. Write the story of the entanglement. This is one of thebest stories of quantum mechanics and quantum computing.

Resources for teachers.

The results of the famous Einstein-Podolsky-Rosen (EPR) thought experiment [53] are already well-established and provide a base of operations for quantum computing and communications. The teacher has to remind the students in each discussed phenomenon or quantum algorithm, how it relates to entanglement so that the students will have a good understanding of it.

A theoretical concept of a Quantum Robot has been introduced by Benioff [7,8] but his papers do not show practical examples. The quantum robots of Benioff, somehow similar to nano-bots, operate in a strictly quantum world, they have quantum sensors and quantum effectors and they move in physical space governed by the quantum mechanics laws. In contrast, the quantum robots introduced by PSU Intelligent Robotics Laboratory [10] are controlled by quantum circuits, but they use normal sensors and effectors and thus operate in macro-world like standard robots. Although in advanced material we will cover also robots of Benioff, it is better to start explanation by the type of robots invented by PSU as they allow for immediate simulation in software and to be used as controllers of mobile and other robots built by teens.

 Although in current projects the students simulate quantum controllers on a standard computer (or Lego Brick), soon it will be possible to use the commercial prototype quantum computer from DWAVE Corporation [21] to control our robots via Internet. In contrast to Benioff’s Quantum Robots, the robots introduced by PSU team should be called Quantum Controlled Robots to emphasize that only their controls are quantum but sensors and effectors are classical. The operation of our quantum robots is based on entanglement, superposition (parallelism), EPR circuits, and many laws of physics that make quantum computers and information so different from those of the classical realm. For instance, in this chapter we illustrate the EPR (Einstein-Podolsky-Rosen) controller circuit that controls a robot which we call the “EPR Robot” [Raghuvanshi07, Raghuvanshi06]. This helps to visualize the concept of entanglement as a certain constraint on robot’s behavior – an easy concept to be grasped even by teenagers and next used by them in their creative designs. Similarly, all other binary quantum gates from next chapters can be used in simulations written by students which reinforces their knowledge and understanding of various binary gates and their types.

Moreover, using Chrestenson transform properties students learn about permutative and non-permutative ternary quantum circuits which is next useful in quantum error correcting codes and oracles. Multiple-valued quantum logic is also a source of interesting theoretical projects. For instance, we generalized [22] the Deutsch-Jozsa algorithm [53] for texture recognition in robot vision tasks. We use also the well-known Grover algorithm [53] for robot action planning [20], problem solving and vision [6,19]. When coupled with truly quantum computer [21], the quantum robots explained in this chapter would speed-up all NP-complete problems quadratically and some vision tasks exponentially, thus allowing to solve in real-time problems that are several orders of magnitude more complex than those solved by the existing computers [22, Perkowski07].

Resources for Teachers.

Most of the contemporary CAD tools in classical computing utilize AND-OR design implementations for both logic synthesis and minimization, both for two-level and multi-level design. These minimization tools are used, also because of historical reasons, in the development of standard digital systems and can be potentially adapted to quantum circuits. However, the fundamental permutative gates in quantum logic are CNOT (Controlled NOT) which uses EXOR gate, Toffoli (which uses double-controlled NOT or C = ab (c function), Fredkin, Peres and generalized Toffoli, like abcde…n (m.

As discussed in next chapters, these gates are internally build from Controlled-V (Controlled Square root of NOT) and its adjoint gate Controlled-V† [Yang05, Yang05a, Yang05b]. The basic classical logic components of quantum gates and quantum design are therefore not the AND and OR operators but the AND and EXOR operators, which means the CV, CV+ gates on the lower level level of description.

The algebra of EXOR and controlled circuits (with commutative operations like (a (c) and non-commutative operations like (a CONTROL c) is not similar to AND/OR/NOT Boolean logic and all respective methods based on Boolean laws (like finding prime implicants, graph coloring to minimize the cover of minterms with prime implicants or unate/binate covering approaches for two or more –level circuits optimization). In contrast to the classical CMOS logic where the realization of the EXOR operator is expensive, the gates based on EXOR are the cheapest in quantum technologies, because of the similarity of this gate to the interaction of particles (see next chapters). Note also that the gates that use OR are expensive and unnecessarily large in quantum implementation, because they are ultimately realized based on the Boolean logic law a + b = a (b (ab.

An interesting topic is realization of reversible gates in various technologies, CMOS, optical, nano. All the above issues will be discussed in the next chapters. At this point we want to give only minimum information for students to be able to build, simulate and use in robots only the simplest quantum circuits. If the students ask questions, please write their questions and send them to me so I will use them in the book (Marek).

Figure 2.7.4.5c. (a) KHR-1 biped, (b) realistic oriental talking woman head, (c) Sonbi the Confucian Scholar from Hahoe Theatre – example of fairy tale robot.

Figure 2.7.4.15. Logic Diagram of a Quantum Automaton. Use of Hilbert space calculations and probabilistic measurement is explained. Memory is standard binary memory, all measurements are binary numbers. All inputs from sensors S1, S2 and outputs to motors M1, M2 are also binary numbers. Mood is an internal state: Mood = 0 corresponds to rational nice mood and Mood = 1 to an irrational and angry robot.

Figure 2.7.4.14. (a) Combinational circuit (state machine with one state) representing the EPR circuit, (b) the Fredkin gate controlled by XOR of signals C, S1 and S2 allows realization of both basic Braitenberg behaviors from Figure 2.7.4.2 as a function of parity on signals C, S1 and S2, (c) Quantum and reversible realization of Braitenberg vehicle from Figure 16.7.4.1c, (d) a circuit with two controls C1 and C2. Their combination C1=1, C2=1 allows observation of EPR circuit behavior (entanglement), other variants of their values allow observation of deterministic and probabilistic behaviors.

Figure 2.7.4.5b: (a) talking lions from Hahoe Theatre, (b) hexapod robot Hexor from Polish company Stenzel Sp. z o.o.

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

Fig. 2.7.4. 13. Final calculation of the unitary matrix of the entanglement circuit by multiplying matrices of Feynman gate and a parallel connection of H and wire in reverse order.

Fig. 2.7.4.12. Unitary matrix of Feynman gate in the entanglement circuit.

Fig. 2.7.4.11. Calculation of Kronecker Product of Hadamard and wire using their unitary matrices (we should also add the coefficient 1/sqrt(2))

Fig. 2.7.4.10. Calculation of parallel connection of gates H and wire

Fig. 2.7.4.9. The quantum controller for the EPR robot. This circuit produces entanglement that can be analyzed by robot behaviors

Fig. 2.7.4.16. Feynman gate notation and its unitary matrix.

Fig. 2.7.4.7. (a) The Chrestenson gate unitary matrix. This gate takes as input a state vector with three basis states and puts them into an equal superposition. Note that permutations of the a and a2 entries, as well as permutations of the rows and columns, do not affect the transforms.(b),(c) generalized ternary Chrestenson gates and their squares.

Fig. 16.7.4.6. Hadamard gate notation and its unitary matrix.

Figure 16.4.5a. Two examples of classical Braitenberg Vehicles from Lego kit.

Figure 4.4. Behavior of Braitenberg Vehicle with gate from Fig. 16.4.3 used as a controller and U being the operator of adding modulo 3.

Fig. 2.7.3. A general-purpose controlled quantum gate. U is arbitrary one-qudit quantum operator. In case of binary qubit S2 this is a one-qubit operator. In case of ternary qutrit S2 this is a one-qutrit operator. In case of quaternary qudit S2 this is a one-qudit operator.

Figure 2.7.2. The vehicle at left avoids light while the vehicle at right follows light.

Figure 2.7.1. The simplest Breitenberg Vehicles with analog control, (a) each sensor is connected to the motor on the same side, (b) each sensor connected to the motor on opposite side, (c) both sensors connected to both the motors.

Resources for teachers.

The best way to teach complex concepts of quantum mechanics to pre-college students is in our experience by using a series of elementary examples, where a theoretical concept is immediately illustrated by a practical robot example. Here is just an illustration. The teacher should find more examples of this type and next ask students to invent their own vehicles with quantum control and test them on real robots

History

Chrestenson

14

_1254175733.unknown

_1254769480.unknown

_1256586602.unknown

_1261320343.vsd
S

d

S = d

0
1

S = c

d

d

0
1

0
1

a

b

c

P

Q

R

c

b

P = a

a = 0

R = c

Q = b

c

b

P = a

a = 1

R = b

Q = d

_1264675726.unknown

_1264707048.ppt

(a)

C

S1

S2

M2

M1

H

Mood

Combinational logic with probabilistic entangled results

memory

m1

m1

md

Calculations in Hilbert Space

measurements

_1264675561.unknown

_1264675599.unknown

_1264670613.unknown

_1256586697.unknown

_1261319445.vsd
0

b

a

0

1

1

0

1

1

1

0

y

_1256586657.unknown

_1255210722.unknown

_1256586574.unknown

_1255211012.unknown

_1254769482.unknown

_1254769483.unknown

_1254769481.unknown

_1254177619.unknown

_1254177695.unknown

_1254769478.unknown

_1254769479.unknown

_1254769476.unknown

_1254769477.unknown

_1254178865.vsd
ab

1

0

0

0,1

1,0

P,Q

0,0

1

1,1

c

_1254185281.vsd
0
1

0
1

a

b

c

P

Q

R

c

b

P = a

a = 0

R = c

Q = b

c

b

P = a

a = 1

R = b

Q = c

_1254177679.unknown

_1254177680.unknown

_1254177677.unknown

_1254177678.unknown

_1254177645.unknown

_1254176142.unknown

_1254176917.unknown

_1254175855.unknown

_1252880561.unknown

_1252883216.unknown

_1253019935.unknown

_1253448106.unknown

_1253448107.unknown

_1253019937.unknown

_1253043888.unknown

_1253019479.unknown

_1253019610.unknown

_1253019664.unknown

_1253019393.unknown

_1252880977.unknown

_1252882071.unknown

_1252880951.unknown

_1252880302.unknown

_1252880416.unknown

_1231597618.vsd
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

_1231601457.vsd
cd

ab

00 01 11 10

00

10

11

01

_1252879591.unknown

_1252255586.unknown

_1231598079.vsd
a

b

c

p

q

r

_1231600491.vsd

_1186964477.unknown

_1223824103.unknown

_1231597603.vsd
1 1
1 -1

1
2

_1186964600.unknown

_1212147283.ppt

s1

00

(oo)1/2 , (11) 1/2

01

(o1)1/2 , (10) 1/2

11

(o1)1/2 , (10) 1/2

10

(oo)1/2 , (11) 1/2

(a)

(b)

(c)

(d)

C

S1

S2

M2

M1

C2

S1

S2

M2

M1

0

S1

S2

garbage

garbage

0

M1

M2

H

C1

garbage

garbage

_1186964495.unknown

_1186812993.unknown

_1186813051.unknown

_1186813023.unknown

_1136188595

_1186812977.unknown

